THE TWO-BEAM TEST-STAND

Demonstrate two-beam acceleration
- power production in PETS
- high gradient acceleration with low RF breakdown rate

Concentrate on
- beam stability & dynamics limitations from RF breakdown
- physics of RF breakdown

BEAM GENERATION

CTF3 complex creates a high power drive beam used to generate RF power.
The probe beam is generated by the CALIFES linac (CEA).

DESIGN

Optics for drive and probe beam lines are similar with differences in drift space.
Test areas next to each other.
Upstream quadrupole triplet to adjust to a small beam size.
Two steerer dipoles and two BPM's located before and after the test area to control and monitor incident angle and beam position.
Downstream quadrupole triplet provides a small beam size for energy measurements in the spectrometer line.

CONSTRUCTION

Each equipment has its individual support which allows alignment with a +/-0.15 mm accuracy with respect to a best-fit polynomial.
- quadrupoles: \(B_{\text{max}} = 11.2 \text{ T} \); integrated \(B = 2.53 \text{ T} \)
- dipoles: \(B_{\text{max}} = 1.64 \text{ T} \); field integral \(2.53 \text{ Tm} \)
- steerer dipoles: \(B_{\text{max}} = 0.017 \text{ T} \); integral \(0.0045 \text{ Tm} \)
- BPM:
 - 8 rodective inductive pick-up
 - relative position accuracy +/-10 \(\mu \text{m} \)
 - signal bandwidth
 - \(\text{H} \text{V} \text{ vertical} \): 0.8 kHz – 150 MHz
 - \(\text{H} \text{R} \text{ horizontal} \): 0.3 kHz – 250 MHz
 - 512 MS/s analogue memory
 - 500 ns buffer
 - 14 bit ADC at 800 kS/s.
- drive beam screen:
 - parabolic shaped aluminium OTR
 - (to reduce vignetting effect in the optical system)
- probe beam screen
- fluorescent ceramic (because of lower beam intensity)
- RF signals:
 - detected by diode (amplitude information only), or
 - IQ demodulators (if phase information required)
 - 8 bit ADC at 1 GS/s
 - 250 MHz bandwidth.
- beam dumps: graphite core with iron or lead/concrete shielding

EXPERIMENTAL PROGRAM

Concentrating on
- beam dynamics
- beam kick due to RF breakdown or dipole modes
- beam loading compensation
- RF breakdown rates
- RF breakdown currents.

Phase 0 = beam line commissioning, start end July.
Phase 1 = PETS, start October
conditioning, verify power production, beam dynamics effects
Phase 2 = PETS + ACS, start March 2009
conditioning, verify accelerating gradient, study RF breakdown rate, study beam dynamics effects

CONCLUSIONS

The TBTS is a unique and versatile facility with excellent beam diagnostics and easy access. It is the only available facility to demonstrate two-beam acceleration, to test CLIC structures and study RF breakdown with a beam.

This work is supported by the Swedish Vetenskapsrådet and the Knut and Alice Wallenberg foundation.