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Outline

This lecture
•

 

technologies for a future linear collider
•

 

highlights of related research

Sections
1.

 

circular versus linear colliders
2.

 

accelerating gradient
3.

 

radio frequency power generation
4.

 

R&D projects for a future linear collider
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Fixed Target Collider

1: Particle Collider History
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Hadron versus Lepton Colliders
hadron collider at the frontier of physics

–

 

huge QCD background
–

 

not all nucleon energy available

 
in collision

lepton collider for precision physics

–

 

well defined CM energy
–

 

polarization possible

after LHC → lepton collider
–

 

energy determined by discoveries
–

 

consensus Ecm

 

≥0.5 TeV
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Circular versus Linear Collider

Circular Collider

 
many magnets, few cavities → need strong field for smaller ring

high energy → high synchrotron radiation losses (E4/R)
high bunch repetition rate → high luminosity

Linear Collider

 
few magnets, many cavities → need efficient RF power production

higher gradient → shorter linac
single pass → need small cross-section for high luminosity:

(exceptional beam quality, alignment and stabilization)

source main linac

N

S

N

S

accelerating cavities
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Cost of Circular & Linear Accelerators

Circular Collider
•

 

ΔEturn

 

~ (q2E4/m4R)
•

 

cost ~ aR

 

+ b ΔE
•

 

optimization: R~E2

 

→ cost ~ cE2

LEP200: ΔE

 

~ 3%; 3640 MV/turn

Linear Collider
•

 

E ~ L
•

 

cost ~ aL

co
st

energy

Circular
Collider

Linear
Collider

~200 GeV

 

e-
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Linear Collider R&D

1.
 

high energy → high accelerating gradient
2.

 

high luminosity → high current & small beam size
3.

 

efficient radio frequency power production
4.

 

feasibility demonstration

e+

 

Linac

Interaction Point 
with Detector

e-

 

Linace+

 

source e-

 

source

RF power

 
Source

RF power

 
Source

accelerating cavities accelerating cavities
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2. Accelerating Gradient
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Accelerating Gap and Gradient
Gap voltage required for acceleration
•

 

cannot be DC,
 because beam tube on ground potential

•
 

use cavity with RF field (Maxwell equations)

•
 

breakdown limit
 (vacuum, Cu surface, Troom

 

)
 

→ high Ec requires high f

•
 

frequency f
 

determines cavity shape
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Drift Tube Linear Accelerator Structure

Low velocity particles
•

 

for velocity < 0.4 c (50 keV
 

e-; 100 MeV
 

p)
•

 

standing wave
•

 

drift tube size and spacing adapted to 
–

 

RF frequency
–

 

particle speed
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Drift Tube Linac: How It works

electric field

Courtesy E. Jensen
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Example of Drift Tube Linacs
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RF power
source

RF

 
load

Electric field

d

Particle bunch

Disk-loaded Accelerating Structure
In free space,
electro-magnetic wave travels faster than particles

 
→ couple wave to resonating structures

 
→ particle velocity equal to phase velocity

Example shows standing wave structure

 

(vgroup

 

=0) with
•

 

π

 

phase advance per cell
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Superconducting RF Cavities (SRF)

©

 

Cornell University
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Advantages Superconducting RF
Very low losses

 

due to tiny surface resistance
 → standing wave cavities with

 low peak power requirements

•
 

High efficiency
•

 

Long pulse trains
 

possible
•

 

Favourable for feed-backs
 

within the pulse train

•
 

Low frequency
 → large dimensions (larger tolerances)

 large aperture
 

and small wakefields
 Important implications for the design

 

of the collider
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SRF Field Gradient Limitations

Eacc

 

limited by Bcritical

•
 

~59 MV/m (single cell)
•

 

~32 MV/m (multi-cell)

•

 

Field Emission
– due to high electric field

 

around iris
•

 

Quench
– caused by surface heating from 

dark current, or
– magnetic field

 

penetration around 
“Equator”

•

 

Contamination
– during assembly
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Progress in SCRF

Record 59 MV/m

 

achieved with single cell cavity at 2K
•

 

improved surface treatment
•

 

shape optimization

•

 

9 cell cavities in operation

 
at DESY (FLASH/XFEL):

– R&D Status ~30 MV/m
– DESY XFEL requires <23.6> MV/m
– ILC requires <31.5> MV/m

TTF = TESLA, LL: low-loss, RE: re-entrant
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Normal Conducting Accelerator Structures

Eacc

 

limited by breakdown RF-field
•

 

> 60 MV/m

Higher gradients than SCRF cavities, but requires
•

 

very high frequency: >10 GHz
•

 

very short pulse lengths: < 1μs

•

 

high ohmic

 

losses

 
→ travelling wave

 
(unlike standing wave in SCRF

 
or low gradient NCRF)

•

 

fill time tfill

 

= 

 

1/vG

 

dz

 
order <100 ns (~ms for SCRF)
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High Frequency Iris Loaded Waveguide Structures

1 cm

30 GHz structure (CLIC)

11.4 GHz structure (NLC)
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High Frequency Structures
CLIC type
T18_vg2.4_disk

designed at CERN
build by KEK
tested at SLAC

Eacc

 

= 106 MV/m
•

 

11.424 GHz
•

 

230 ns pulse length
•

 

10-6

 

breakdown rate (BDR)

Frequency 11.424 GHz

Cells 18+input+output

Filling Time 36 ns

Length 29 cm

Iris Dia. a/λ 15.5~10.1 %

Group Velocity: vg

 

/c 2.61-1.02 %

S11

 

/ S21 0.035/0.8

Phase Advace Per Cell 2π/3

Power Needed <Ea

 

>=100MV/m 55.5 MW
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3. RF Power Source
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Electromagnetic Waves

•
 

static electron
 → electric

 

field

•
 

moving electron
 → electromagnetic

 wave

•
 

constant electron beam
 → static electric field

 + static magnetic field

•
 

bunched electron beam
 → electromagnetic wave
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Klystron Microwave Amplifier
•

 

vacuum tube amplifier by
 electron density bunching

•
 

200 MHz –
 

20 GHz
•

 

<1.5 MW ave.; <150 MW peak

Intermediate
Cavities

Gun

Input 
Cavity

Collector

Output 
Cavity

Magnet

Output
Window

electron

 

bunching
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Two-beam Acceleration Concept

•
 

12 GHz modulated and
 high power drive beam

•
 

RF power extraction
 in a special structure
 (PETS)

→ only passive elements
•

 

use RF power to
 accelerate main beam

•
 

compress energy density

drive beam main beam
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Drive-beam Generation by Beam Gymnastics
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Drive Beam Generation

Courtesy A. Andersson
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4: Projects for a Future Linear Collider
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Basic Layout of a Linear Collider
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The ILC and CLIC

ILC International Linear Collider
•

 

superconducting technology
•

 

1.3 GHz
•

 

31.5 MV/m
•

 

ECM

 

= 500 GeV
•

 

upgrade to 1 TeV

CLIC Compact Linear Collider
•

 

normal conducting technology
•

 

12 GHz
•

 

100 MV/m
•

 

ECM

 

= 3 TeV

LHC should indicate which energy level is needed

Courtesy Sandbox Studio / interactions.org

ILC

 
1 TeV

 
35km

LHC

 
7 TeV

 
27km

TevaTron

 
2 TeV

 
6.3km
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ILC: The International Linear Collider
Baseline:
•

 

2 x 250 GeV superconducting linac
•

 

2x1034

 

cm-2s-1

 

(14 mrad X-angle)
•

 

polarized electron photo-gun
•

 

undulator

 

positron source at 150 GeV
•

 

5 GeV

 

damping rings (C=6.7 km) ‏
•

 

4.5 km long beam-delivery system 
to make spot sizes of 640 x 5.7 nm 

Parameter Value

C.M.  Energy 500 GeV

Peak luminosity 2x1034

 

cm-2s-1

Beam Rep. rate 5 Hz

Pulse time duration 1 ms

Average beam current 9 mA

 

(in pulse)

Average field gradient 31.5 MV/m

# 9-cell cavity 14,560

# cryomodule 1,680

# RF units 560

31 km
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Linear Collider Siting

•
 

Where to build?

•
 

Deep/shallow 
tunnel

•
 

Geometry
–

 

Laser straight?
–

 

follow curvature?
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CLIC: Compact Linear Collider

Φ4.5m tunnel

Main Linac
C.M.  Energy 3 TeV

Peak luminosity 2x1034

 

cm-2s-1

Beam Rep. rate 50 Hz

Pulse time duration 156 ns

Average field gradient 100 MV/m
# accelerating cavities 2 x 71,548
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3.5A –

 

150 MeV

 
1.5GHz –

 

1.4µs

28A –

 

150 MeV

 
12GHz –

 

140ns

CTF3: CLIC Test Facility

•
 

demonstration drive beam generation
 (fully loaded acceleration, frequency multiplication)

•
 

evaluate beam stability & losses
 

in deceleration
•

 

develop power production & accelerating structures
 (damping, PETS on/off, beam dynamics effects)

TBTS



34Roger Ruber - Beyond LHC: the path towards future linear colliders

Outline

1. Colliders

2. Cavities

3. RF power

4. Projects

22-Jun-2010

Efficient power transfer
“Standard”

 

situation:
•

 

small beam loading
•

 

power at exit lost in load
“Efficient”

 

situation:

 

VACC

 

≈

 

1/2 Vunloaded

•

 

high beam loading
•

 

no power flows into load

Demonstration Fully Loaded Operation

field builds up linearly 
(and stepwise, for

 

point-like bunches)

95.3%

 

RF 
power to beam P

ou
t
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Demonstration Beam Re-combination
•

 

delay loop

 

(DL) gap creation

 
(for CR extraction) and

 
doubling frequency + intensity

•

 

combiner ring

 

bunch interleaving

 
(delay loop bypass, instabilities)

 140 ns

before DL

in DL

after DL

Beam Current
Combiner Ring

12 A

1st

turn
2nd

turn
3rd

turn
4th

turn
3 A

3rd

 

Oct. 2008
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Demonstration Two-beam Acceleration

CTF3 drive-beam

Experimental area

Spectrometers and 
beam dumps

Construction supported by the

 
Swedish Research Council and the 
Knut and Alice Wallenberg Foundation

CALIFES probe-beam

Two-beam Test Stand
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Two-beam Test Stand

experimental area

drive beamprobe beam ©
C
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N

-A
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•

 

Pulses with breakdowns not useful for acceleration

 
(beam kick and instabilities)

•

 

Low breakdown rate

 

required (< 10-6) for useful operation

from S.Fukuda/KEK

RF Waveform Distortion on Breakdown
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Beam Kick Measurements

6.1m

Breakdown kick

Two chicanes

 

remove breakdown currents

BPM5: x5

BPM 1: x1BPM2: x2BPM 3: x3BPM 4: x4
Dipole

Incoming 
beam

Estimated error
•

 

beam position: 10 μm, angle: 7 μrad
•

 

kick position: 31 μm, angle: 11 μrad
•

 

relative energy change from kick: 32x10-6

(see M. Johnson, CLIC Note 710, CERN-OPEN-2007-022)
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RF Breakdown: a Reliability Issue
Conditioning required
•

 

to reach nominal gradient
but
•

 

damage by excessive field

Physics phenomena not yet
completely understood!

1 mm

©©

 

CERNCERN
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