

RF-breakdown Experiments at the CTF3 Two-beam Test-stand

M. Johnson, V. Ziemann, T. Ekelöf, R.J.M.Y. Ruber Uppsala University, Sweden H.H. Braun CERN, Switzerland

x2 Delay Loop

RF-BREAKDOWN STUDIES

Influence of RF-breakdown on CLIC operation

- effects of the breakdown on the beam

Physics of the RF-breakdown

- origin of breakdown currents
- temperature of breakdown

Combiner 30 GHz Test-s Two-beam Test-stand CLEX

ION CURRENT MEASUREMENTS

RF-breakdown current

- burst of electrons
- positively charged particles: ions because slow arrival time

Working hypothesis

- microscopic amount of material evaporates and is ionized
- RF field carries away the electrons
- remaining ions undergo hot coulomb explosion

Hot coulomb explosion, sperical homogeneous distribution.

Arrival time spectrum: $dN/dt = f(\eta N_0, t_s, \alpha)$

- ηN_0 = number of particles arriving at the detector (Faraday cup)
- $-t_{S}$ = arrival time parameter
- α = thermal motion parameter

Statistics on 1146 events, median values shown in plot. Median temperature $T = 5.1 \times 10^5 \text{ K}$ (assuming copper ions).

0.03

0.02

signal ⊠ 0.01

-0.01

-0.02

-0.03<u></u> -5

Time [µs]

MULTPLE PEAK EVENTS

Above statistics for "nice" single peak events.

Majority has multiple peaks visible:

Fast peaks: overlap with breakdown electrons

Medium peaks: arrive between 5 - 10 μs

Slow peaks: arrival after 15 µs (generally wider than "medium" peaks)

Possible explanation

- multiple breakdown sites
- multiple charge states

TRANSVERSE KICK MEASUREMENTS

Beam receives transverse kick and energy loss during RF breakdown

- may cause the beams to miss each other at the IP, reducing luminosity,
- may cause beam oscillations that can become unstable - may steer the beam into collimators, causing extensive downtime.

Magnitude of the kicks to be addressed in order to assess its severity

- beam stability
- operational reliability

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ R_{11}^{12} & R_{12}^{12} & 0 & 0 \\ R_{11}^{13} & R_{12}^{13} & R_{12}^{c3} & 0 \\ R_{11}^{14} & R_{12}^{14} & R_{12}^{c4} & 0 \\ R_{11}^{15} & R_{12}^{15} & R_{12}^{c5} & D^5 \end{pmatrix} \begin{pmatrix} x_1 \\ x_1' \\ \theta \\ dp/p \end{pmatrix}$$

abbreviation:

 $\vec{x} = A\theta$

solution:

 $\vec{\theta} = (A^t A)^{-1} A^t \vec{x}$

error bars:

 $\sigma(\theta_i) = (A^t A)_{ii}^{-1} \sigma_{\rm BPM}$

RESULTS

Use 5 BPM's, assume

- incoming beam position (x, x')

 \sim 10 μ m \sim 10 μ m

resolution

- transverse kick angle (θ)
- \sim 10 μ rad

- relative energy change $(\Delta p/p)$
- $\sim 4 \times 10^{-5}$