

Short Introduction to CLIC and CTF3, Technologies for Future Linear Colliders

Explanation of the Basic Principles and Goals Visit to the CTF3 Installation

Roger Ruber

Collider History

- hadron collider at the frontier of physics
 - huge QCD background
 - not all nucleon energy available in collision

- lepton collider for precision physics
 - well defined CM energy
 - polarization possible

next machine after LHC

- -e+e- collider
- energy determined by LHC discoveries consensus E_{cm} ≥0.5 TeV

Circular Collider

many magnets, few cavities, stored beam higher energy \rightarrow stronger magnetic field \rightarrow higher synchrotron radiation losses ($\infty E^4/R$)

Linear Collider

few magnets, many cavities, single pass beam higher energy → higher accelerating gradient higher luminosity → higher beam power (high bunch repetition)

Cost of Circular & Linear Accelerators

- cost ~ aR + b ΔE
- optimization: $R \sim E^2 \rightarrow cost \sim cE^2$

Linear Collider

- E ~ L
- cost ~ aL

Linear Collider R&D

CTF3 goals:

- 1. high accelerating gradient
- 2. efficient power production
- 3. feasibility demonstration

Acceleration of Charged Particles

Lorenz (EM) force most practical

$$\mathbf{F} = e(\mathbf{v} \times \mathbf{B} + \mathbf{E})$$

increasing particle energy

$$\Delta E = e \int \mathbf{E} \cdot d\mathbf{r} = e U$$

- to gain 1 MeV energy requires a 1 MV field
- Direct-voltage acceleration used in
- TV tube: 20~40 kV
- X-ray tube: ~100 kV
- tandem van de Graaff: up to ~25 MV

VACUUM TURE

ELECTRON

FOCUSING

ALLELERATING AND DEFLECTION SUSTERS

Drift Tube Linac: Higher Integrated Field

© 2007 Encyclopædia Britannica, Inc.

Courtesy E. Jensen

Travelling Wave Structure

- electrons β~1 (v~c)
- short pulses
 high frequency >3 GHz

 typical 10~20 MV/m

- CLIC:
 - 12 GHz
 - 240 ns
 - 100 MV/m

Accelerating Cavities

DC Accelerator

RF Accelerator

synchronize particle with an electromagnetic wave!

Linear Collider R&D

Challenges:

- 1. high accelerating gradient
- 2. efficient power production
- 3. feasibility demonstration

Electromagnetic Waves

- static electron
 → electric field
- moving electron
 → electromagnetic wave
- constant electron beam
 → static electric field
 + static magnetic field

bunched electron beam
 → electromagnetic wave

- 12 GHz modulated and high power drive beam
- RF power extraction in a special structure (PETS)
- use RF power to accelerate main beam

Recombination to Increase Peak Power & Frequency

Linear Collider R&D

Challenges:

- 1. high accelerating gradient
- 2. efficient power production
- 3. feasibility demonstration

CLIC: Compact Linear Collider

CTF3 Test Facility

- demonstration drive beam generation
- evaluate beam stability & losses in deceleration
- develop power production & accelerating structures

